Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492267

RESUMO

Early detection of invasive species is crucial to deal effectively with biological invasions in ports, which are hotspots of species introductions. In this study, a simplified end-time PCR methodology conducted on eDNA from water samples was developed for rapid detection of the invasive seaweed Asparagopsis armata (four hours from water collection to result visualization). It was tested dockside in four international Spanish ports in presence of stakeholders, whose feedback was obtained to explore the real applicability of this biotechnology. Although biological invasions were not a main concern for them, results indicate a unanimous approval of the methodology by the stakeholders, having detected the presence of A. armata in three of the ports. Stakeholders suggested further developments for easier application of the tool and multiple species detection, to be adopted for the control of invasive species in ports.


Assuntos
Rodófitas , Alga Marinha , Alga Marinha/genética , Rodófitas/genética , Espécies Introduzidas , Água
2.
Mar Environ Res ; 194: 106312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150786

RESUMO

The richness of plankton communities determines the fish productivity in the ocean, including important resources that rely on extractive fisheries, such as hakes (genus Merluccius) and tunas (genus Thunnus). Their preys forage on zooplankton, and the latter feed on phytoplankton. Inventories of plankton communities for scientific advice to sustainable fishing are essential in this moment of climate change. Plankton is generally inventoried using conventional methodologies based on large water volumes and visual morphological analyses of samples. In this study, we have employed metabarcoding on environmental DNA (eDNA) samples extracted from small water volumes for plankton inventory from twelve distant sampling stations in the East Atlantic Ocean. Zones rich in hake and tuna prey were detected from eDNA, and multivariate multiple regression analysis was able to predict those zones from diatom-based indices and planktonic diversity based on functional groups. Salinity was negatively correlated with the proportion of diatoms in phytoplankton, highlighting expected impacts of current global change on marine plankton communities. The results emphasise the importance of the plankton richness for fish productivity and support the utility of environmental DNA as a tool to monitor plankton composition changes.


Assuntos
DNA Ambiental , Diatomáceas , Animais , Plâncton , Atum , Fitoplâncton/genética , Água , Ecossistema
3.
Ecotoxicol Environ Saf ; 262: 115135, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37320916

RESUMO

Microplastics (MPs) affect both marine and terrestrial biota worldwide for their harmful effects, which range from physical cell damage to physiological deterioration. In this research, microplastics were quantified from gills, liver and muscle of demersal Benguela hakes Merluccius polli (n = 94), caught by commercial trawling from northwest African waters. Plastic polymers were identified using Fourier Transformed-infraRed spectroscopy (FT-iR). Fulton's k condition factor and the degree of DNA degradation in liver were measured. None of the individuals were free of MPs, whose concentration ranged from 0.18 particles/g in muscle to 0.6 in liver. Four hazardous polymers were identified: 2-ethoxyethylmethacrylate, polyester, polyethylene terephthalate, and poly-acrylics. MP concentration in liver was correlated negatively with the condition factor, suggesting physiological damage. Positive association of MP concentration and liver DNA degradation was explained from cell breakage during trawl hauls during decompression, suggesting an additional way of MPs harm in organisms inhabiting at great depth. This is the first report of potential MPs-driven damage in this species; more studies are recommended to understand the impact of MP pollution on demersal species.

5.
Mol Ecol ; 32(6): 1398-1410, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35403749

RESUMO

The evolution of sex chromosomes and their differentiation from autosomes is a major event during genome evolution that happened many times in several lineages. The repeated evolution and lability of sex-determination mechanisms in fishes makes this a well-suited system to test for general patterns in evolution. According to current theory, differentiation is triggered by the suppression of recombination following the evolution of a new master sex-determining gene. However, the molecular mechanisms that establish recombination suppression are known from few examples, owing to the intrinsic difficulties of assembling sex-determining regions (SDRs). The development of forward-genetics and long-read sequencing have generated a wealth of data questioning central aspects of the current theory. Here, we demonstrate that sex in Midas cichlids is determined by an XY system, and identify and assemble the SDR by combining forward-genetics, long-read sequencing and optical mapping. We show how long-reads aid in the detection of artefacts in genotype-phenotype mapping that arise from incomplete genome assemblies. The male-specific region is restricted to a 100-kb segment on chromosome 4 that harbours transposable elements and a Y-specific duplicate of the anti-Mullerian receptor 2 gene, which has evolved master sex-determining functions repeatedly. Our data suggest that amhr2Y originated by an interchromosomal translocation from chromosome 20 to 4 pre-dating the split of Midas and Flier cichlids. In the latter, it is pseudogenized and translocated to another chromosome. Duplication of anti-Mullerian genes is a common route to establishing new sex determiners, highlighting the role of molecular parallelism in the evolution of sex determination.


Assuntos
Ciclídeos , Masculino , Animais , Ciclídeos/genética , Receptores de Fatores de Crescimento Transformadores beta , Elementos de DNA Transponíveis
6.
Sci Total Environ ; 806(Pt 2): 150671, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599958

RESUMO

Microplastic (MP) pollution is increasing worldwide and affecting aquatic fauna in different ways, which endangers current aquatic resources in a still unknown extent. MP-induced threats to marine fauna are critical for developing countries, where waste treatment may be not optimal and coastal communities rely heavily on marine resources for dietary protein. In this study, we assess the importance of MP pollution for African fishing resources. A new meta-database was created from published studies, containing 156 samples with more than 6200 individuals analysed for microplastic content from African and adjacent waters. A combination of research landscape analysis and rank analysis served to identify main research targets and to determine regional fishing resources especially affected by MP. A network of relevant terms showed fish health as a concern in Mediterranean waters, environmental pollution in freshwater and an emphasis on plastic items in South Africa. MP contents in fishing resources from Nile countries and the Gulf of Guinea, followed by Tunisia, are significantly higher than in other regions. Some of the most exploited species are among the most polluted ones, highlighting the threat of MP pollution in valuable but already compromised African fishing resources. Large geographic gaps with almost absent data about MP in aquatic fauna were revealed, especially in freshwater and in East African coasts. These results emphasize the importance of increasing the coverage of MP pollution in African fishing resources, and improving plastic waste management in the continent.


Assuntos
Microplásticos , Plásticos , Animais , Poluição Ambiental , Água Doce , Humanos
7.
Ecol Evol ; 11(23): 17496-17508, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938524

RESUMO

Exaggerated secondary sexual characteristics are apparently costly and seem to defy natural selection. This conundrum promoted the theory of sexual selection. Accordingly, exaggerated secondary sexual characteristics might be ornaments on which female choice is based and/or armaments used during male-male competition. Males of many cichlid fish species, including the adaptive radiation of Nicaraguan Midas cichlids, develop a highly exaggerated nuchal hump, which is thought to be a sexually selected trait. To test this hypothesis, we conducted a series of behavioral assays in F2 hybrids obtained from crossing a species with a relatively small hump and one with an exaggerated hump. Mate-choice experiments showed a clear female preference for males with large humps. In an open-choice experiment with limited territories, couples including large humped males were more successful in acquiring these territories. Therefore, nuchal humps appear to serve dual functions as an ornament for attracting mates and as an armament for direct contest with rivals. Although being beneficial in terms of sexual selection, this trait also imposes fitness costs on males possessing disproportionally large nuchal humps since they exhibit decreased endurance and increased energetic costs when swimming. We conclude that these costs illustrate trade-offs associated with large hump size between sexual and natural selection, which causes the latter to limit further exaggeration of this spectacular male trait.

8.
Genes (Basel) ; 12(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210039

RESUMO

Mislabelling of fish and fish products has attracted much attention over the last decades, following public awareness of the practice of substituting high-value with low-value fish in markets, restaurants, and processed seafood. In some cases, mislabelling includes illegal, unreported, and unregulated (IUU) fishing, contributing to overexploit substitute species that are undetectable when sold under wrong names. This is the first study of DNA barcoding to assess the level of mislabelling in fish marketed in Ghana, focusing on endangered shark species. Genetic identification was obtained from 650 base pair sequences within the cytochrome c oxidase I (COI) gene. All except one of 17 shark fillets analysed were wrongly labelled as compared with none of 28 samples of small commercial pelagic fish and 14 commercial shark samples purchased in Europe. Several substitute shark species in Ghana are endangered (Carcharhinussignatus and Isurusoxyrinchus) and critically endangered (Squatina aculeata). Shark products commercialized in Europe (n = 14) did not reveal mislabelling, thus specific shark mislabelling cannot be generalized. Although based on a limited number of samples and fish markets, the results that reveal trade of endangered sharks in Ghana markets encourage Ghanaian authorities to improve controls to enforce conservation measures.


Assuntos
Espécies em Perigo de Extinção/estatística & dados numéricos , Produtos Pesqueiros/normas , Rotulagem de Alimentos/normas , Tubarões/genética , Animais , Código de Barras de DNA Taxonômico/normas , Espécies em Perigo de Extinção/legislação & jurisprudência , Pesqueiros/normas , Gana , Tubarões/fisiologia
9.
Sci Rep ; 11(1): 11423, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075165

RESUMO

Despite high effort for food traceability to ensure safe and sustainable consumption, mislabeling persists on seafood markets. Determining what drives deliberate fraud is necessary to improve food authenticity and sustainability. In this study, the relationship between consumer's appreciation and fraudulent mislabeling was assessed through a combination of a survey on consumer's preferences (N = 1608) and molecular tools applied to fish samples commercialized by European companies. We analyzed 401 samples of fish highly consumed in Europe and worldwide (i.e. tuna, hake, anchovy, and blue whiting) through PCR-amplification and sequencing of a suite of DNA markers. Results revealed low mislabeling rate (1.9%), with a higher mislabeling risk in non-recognizable products and significant mediation of fish price between consumer´s appreciation and mislabeling risk of a species. Furthermore, the use of endangered species (e.g. Thunnus thynnus), tuna juveniles for anchovy, and still not regulated Merluccius polli hake as substitutes, points towards illegal, unreported and/or unregulated fishing from African waters. These findings reveal a worrying intentional fraud that hampers the goal of sustainable seafood production and consumption, and suggest to prioritize control efforts on highly appreciated species.


Assuntos
Peixes/classificação , Rotulagem de Alimentos , Fraude , Alimentos Marinhos/análise , África , Animais , Código de Barras de DNA Taxonômico/métodos
10.
Sci Total Environ ; 762: 143098, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127132

RESUMO

The increasing global demand for electric and electronic equipment (EEE) such as smartphones, tablets and electric car batteries has resulted in an increase in heavy metal releases to the environment at different steps during its manufacture (e.g. mining, extraction, production and e-waste). Some critical raw materials (CRMs) that supply the worldwide demand of technology are mainly sourced from Africa, but their resulting heavy metal pollution can reach citizens from other regions of the world through seafood caught in African waters, which would act as a vector. In this study, we review heavy metal contents in African fish and, as proof of concept, we analyse heavy metal content in three tuna species (Thunnus alalunga, T. albacares and T. obesus) caught in different regions inside the Sustainable Fisheries Partnership Agreements (SFPAs) by Spanish fleets and commercialised in Spain. Thunnus alalunga and T. albacares from African waters had higher concentrations of heavy metals (especially Hg but also As and Pb) in muscle than samples of the same species caught in other waters. Metal profiles in tunas from African waters were significantly correlated with those of continental and coastal fish from nearby areas impacted by mines and e-waste, as found in the literature review. Based on these results we identify research priorities that should be addressed in order to improve the social and environmental sustainability of EEE metal manufacture in Africa.


Assuntos
Mercúrio , Metais Pesados , África , Animais , Eletrônica , Monitoramento Ambiental , Mercúrio/análise , Metais Pesados/análise , Alimentos Marinhos/análise , Espanha , Atum
11.
Nature ; 588(7836): 106-111, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33116308

RESUMO

The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Especiação Genética , Genoma/genética , Genômica , Simpatria/genética , Animais , Ciclídeos/anatomia & histologia , Feminino , Fluxo Gênico , Deriva Genética , Masculino , Preferência de Acasalamento Animal , Herança Multifatorial/genética , Filogenia , Pigmentação/genética , Polimorfismo Genético
12.
Microbiome ; 8(1): 149, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121541

RESUMO

BACKGROUND: Recent increases in understanding the ecological and evolutionary roles of microbial communities have underscored the importance of their hosts' biology. Yet, little is known about gut microbiota dynamics during the early stages of ecological diversification and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid fish (Amphilophus cf. citrinellus). Specifically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. RESULTS: Bacterial communities of fish guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specific factors. Among individuals of the same crater lake, differentiation in trophic ecology was weakly associated with gut microbiota differentiation, suggesting that diet, to some extent, affects the gut microbiota. However, differences in trophic ecology were much more pronounced across than within species whereas similar patterns were not observed for taxonomic and functional differences of the gut microbiota. Across the two crater lakes, we could not detect conclusive evidence for parallel changes of the gut microbiota associated with trophic ecology. CONCLUSIONS: A lack of clearly differentiated niches during the early stages of ecological diversification might result in non-parallel changes of gut microbial communities, as observed in our study system as well as in other recently diverged fish species. Video Abstract.


Assuntos
Evolução Biológica , Ciclídeos/classificação , Ciclídeos/microbiologia , Microbioma Gastrointestinal , Simpatria , Animais , Microbioma Gastrointestinal/genética , Especiação Genética , Lagos , Nicarágua , RNA Ribossômico 16S/genética
13.
Mar Pollut Bull ; 156: 111252, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510394

RESUMO

Microplastics (MPs) attract ever-increasing attention due to environmental concerns. Nowadays, they are ubiquitous across ecosystems, and research demonstrates that the origin is mainly terrestrial. Wastewater treatment plants (WWTPs) are a major source of MPs, especially fibres, in water masses. This review is focused on understanding the evolution and fate of microplastics during wastewater treatment processes with the aim of identifying advanced technologies to eliminate microplastics from the water stream. Among them, bioremediation has been highlighted as a promising tool, but confinement of microorganisms inside the WWTP is still a challenge. The potential for MPs bioremediation in WWTPs of higher aquatic eukaryotes, which offer the advantages of low dispersion rates and being easy to contain, is reviewed. Animals, seagrasses and macrophytes are considered, taking into account ecoethical and biological issues. Necessary research and its challenges have been identified.


Assuntos
Águas Residuárias/análise , Poluentes Químicos da Água/análise , Animais , Biodegradação Ambiental , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos
14.
J Fish Biol ; 95(1): 304-310, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30281146

RESUMO

In this work, patterns of geographical genetic diversity in Atlantic salmon Salmo salar were studied across the whole Atlantic Arc; whether these patterns (and thus genetic population structure) were affected by water temperatures was also evaluated. Salmo salar populations were characterized using microsatellite loci and then analysed with reference to ocean surface temperature data from across the region. Analysis showed the presence of a latitudinal cline of genetic variability (higher in northern areas) and water temperatures (sea surface temperatures) determining genetic population structure (the latter in combination with genetic drift in southern populations). Under the current global change scenario, northern areas of Europe would constitute refugia for diversity in the future. This is effectively the inverse of what appears to have happened in glacial refugia during the last glacial maximum. From this perspective, the still abundant and large northern populations S. salar should be considered as precious as the small almost relict southern ones and given appropriate protection. Careful management of the species, coordinated across countries and latitudes, is needed in order to avoid its extinction in Europe.


Assuntos
Mudança Climática , Variação Genética , Salmo salar/genética , Animais , Oceano Atlântico , Clima , Demografia , Espécies em Perigo de Extinção , Europa (Continente) , Genética Populacional , Geografia , Repetições de Microssatélites , Filogeografia , Densidade Demográfica , Refúgio de Vida Selvagem , Temperatura
15.
Evol Lett ; 2(4): 323-340, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30283685

RESUMO

Explaining why some lineages diversify while others do not and how are key objectives in evolutionary biology. Young radiations of closely related species derived from the same source population provide an excellent opportunity to disentangle the relative contributions of possible drivers of diversification. In these settings, lineage-specific effects are shared and can be ruled out. Moreover, the relevant demographic and ecological parameters can be estimated accurately. Midas cichlid fish in Nicaragua have repeatedly colonized several crater lakes, diverged from the same source populations, and, interestingly, diversified in some of them but not others. Here, using the most comprehensive molecular and geometric morphometric data set on Midas cichlids to date (∼20,000 SNPs, 12 landmarks, ∼700 individuals), we aim to understand why and how crater lake populations diverge and why some of them are more prone to diversify in sympatry than others. Taking ancestor-descendant relationships into account, we find that Midas cichlids diverged in parallel from their source population mostly-but not exclusively-by evolving more slender body shapes in all six investigated crater lakes. Admixture among crater lakes has possibly facilitated this process in one case, but overall, admixture and secondary waves of colonization cannot predict morphological divergence and intralacustrine diversification. Instead, morphological divergence is larger the more dissimilar a crater lake is compared to the source lake and happens rapidly after colonization followed by a slow-down with time. Our data also provide some evidence that founder effects may positively contribute to divergence. The depth of a crater lake is positively associated with variation in body shapes (and number of species), presumably by providing more ecological opportunities. In conclusion, we find that parallel morphological divergence in allopatry and the propensity for diversification in sympatry across the entire Midas cichlid fish radiation is partly predictable and mostly driven by ecology.

16.
Science ; 362(6413): 457-460, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30361373

RESUMO

The color patterns of African cichlid fishes provide notable examples of phenotypic convergence. Across the more than 1200 East African rift lake species, melanic horizontal stripes have evolved numerous times. We discovered that regulatory changes of the gene agouti-related peptide 2 (agrp2) act as molecular switches controlling this evolutionarily labile phenotype. Reduced agrp2 expression is convergently associated with the presence of stripe patterns across species flocks. However, cis-regulatory mutations are not predictive of stripes across radiations, suggesting independent regulatory mechanisms. Genetic mapping confirms the link between the agrp2 locus and stripe patterns. The crucial role of agrp2 is further supported by a CRISPR-Cas9 knockout that reconstitutes stripes in a nonstriped cichlid. Thus, we unveil how a single gene affects the convergent evolution of a complex color pattern.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Evolução Biológica , Ciclídeos/anatomia & histologia , Ciclídeos/fisiologia , Pigmentação da Pele , Proteína Relacionada com Agouti/genética , Animais , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Ciclídeos/genética , Técnicas de Inativação de Genes , Loci Gênicos , Mutação , Pigmentação da Pele/genética
17.
G3 (Bethesda) ; 7(9): 3195-3202, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28751505

RESUMO

The independent evolution of the two toothed jaws of cichlid fishes is thought to have promoted their unparalleled ecological divergence and species richness. However, dental divergence in cichlids could exhibit substantial genetic covariance and this could dictate how traits like tooth numbers evolve in different African Lakes and on their two jaws. To test this hypothesis, we used a hybrid mapping cross of two trophically divergent Lake Victoria species (Haplochromis chilotes × Haplochromis nyererei) to examine genomic regions associated with cichlid tooth diversity. Surprisingly, a similar genomic region was found to be associated with oral jaw tooth numbers in cichlids from both Lake Malawi and Lake Victoria. Likewise, this same genomic location was associated with variation in pharyngeal jaw tooth numbers. Similar relationships between tooth numbers on the two jaws in both our Victoria hybrid population and across the phylogenetic diversity of Malawi cichlids additionally suggests that tooth numbers on the two jaws of haplochromine cichlids might generally coevolve owing to shared genetic underpinnings. Integrated, rather than independent, genomic architectures could be key to the incomparable evolutionary divergence and convergence in cichlid tooth numbers.


Assuntos
Ciclídeos/genética , Evolução Molecular , Estudos de Associação Genética , Genoma , Genômica , Dente , Animais , Evolução Biológica , Ciclídeos/anatomia & histologia , Feminino , Genômica/métodos , Arcada Osseodentária , Masculino , Locos de Características Quantitativas , Característica Quantitativa Herdável , Dente/anatomia & histologia
18.
J Anim Ecol ; 86(5): 1044-1053, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502118

RESUMO

Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a significant size-by-colour interaction. We suggest that gold Midas cichlids experience a rare morph advantage as juveniles when individuals of this morph are extremely uncommon. But this effect is reduced or disappears among adults, where gold individuals are relatively more common. Thus, the interaction of rare morph advantage and conspicuousness, rather than either of those factors alone, is a likely mechanism resulting in the stability of the colour polymorphism in Midas cichlids.


Assuntos
Ciclídeos , Cor , Ouro , Animais , Comportamento Animal , Tamanho Corporal , Meio Ambiente , Lagos
19.
Evolution ; 71(5): 1297-1312, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28211577

RESUMO

Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.


Assuntos
Ciclídeos/genética , Especiação Genética , Genótipo , Fenótipo , Animais , Genoma , Lagos , Locos de Características Quantitativas
20.
Mol Ecol ; 26(8): 2348-2362, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28133841

RESUMO

Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating.


Assuntos
Ciclídeos/genética , Especiação Genética , Lábio/anatomia & histologia , Seleção Genética , Animais , Ciclídeos/anatomia & histologia , Ecótipo , Feminino , Hipertrofia , Lagos , Masculino , Nicarágua , Comportamento Predatório , Comportamento Sexual Animal , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...